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We present new proofs of termination of evaluation in reduction semantics (i.e., a small-step opera-
tional semantics with explicit representation of evaluation contexts) for System F with control oper-
ators. We introduce a modified version of Girard’s proof method based on reducibility candidates,
where the reducibility predicates are defined on values and on evaluation contexts as prescribed by
the reduction semantics format. We address both abortive control operators (callcc) and delimited-
control operators (shift and reset) for which we introduce novel polymorphic type systems, and we
consider both the call-by-value and call-by-name evaluation strategies.

1 Introduction

Termination of reductions is one of the crucial properties of typed A-calculi. When considering a A-
calculus as a deterministic programming language, one is usually interested in termination of reductions
according to a given evaluation strategy, such as call by value or call by name, rather than in more general
normalization properties. A convenient format to specify such strategies is reduction semantics, i.e.,a
form of operational semantics with explicit representation of evaluation (reduction) contexts [14], where
the evaluation contexts represent continuations [[10]. Reduction semantics is particularly convenient for
expressing non-local control effects and has been most successfully used to express the semantics of
control operators such as callcc [[14], or shift and reset [3l].

For simply-typed languages with control operators, it is common to prove termination of evaluation
(and of normalization in general) by translating, in a reduction-preserving way, terms in the source
language to a target language for which the normalization property has been established before [16, 27]].
Such indirect proofs in general can be cumbersome and, as argued by Ikeda and Nakazawa [19], they
can be error-prone.

In a previous work [3l 4], it has been shown that a context-based variant of Tait’s proof method based
on reducibility predicates [28l 29] allows for direct and concise proofs of termination of evaluation in
reduction semantics for the simply-typed A-calculus with control operators, be they abortive or delimited.
Unlike translation-based proofs, the context-based proof method directly takes advantage of the format
of the reduction semantics, where the key role is played by evaluation contexts. So, for instance, in order
to prove termination of evaluation for the simply-typed A-calculus under call by value using the context-
based method, one defines mutually inductively reducibility predicates on values (normal forms) as well
as on evaluation contexts. The termination result then follows by induction on well-typed terms, where
the reasoning is driven by the control flow of a typical evaluator in continuation-passing style [3, 4.
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2 Proving termination of evaluation for System F with control operators

In this article, we show that the context-based method can be generalized from reducibility predi-
cates to reducibility candidates, and therefore it provides simple proofs of termination of evaluation for
System F with control operators. Just as for the simply-typed A-calculi, normalization for polymor-
phic A-calculi with control operators has been mainly established indirectly, via translations to strongly
normalizing calculi: Harper and Lillibridge reduced termination of call-by-value evaluation for Fy, with
abort and callcc to normalization in Fy, [18] by a CPS translation, Parigot reduced strong normalization
of the second-order A p-calculus to strong normalization of the simply-typed A-calculus [25]], Danos et
al. reduced strong normalization of the second-order classical logic to strong normalization of linear
logic [8]], and Kameyama and Asai reduced strong normalization of System F with shift and reset under
the standard semantics to strong normalization of System F [20].

On the other hand, Parigot directly proved strong normalization of the second-order A p-calculus
using another variant of the reducibility candidates [25]—we discuss this result in Section Later on,
further adaptations of Tait-Girard’s method have been proposed and applied to various flavors of second-
order logic [9} 21} 22, 24]. In particular, following Girard, the techniques of orthogonality have been
used as a framework in which the concepts of the original reducibility method can be phrased. The use
of orthogonality induces the notion of context which is understood as a sequence of terms—roughly cor-
responding to call-by-name contexts. Reducibility candidates are then defined in terms of TT-closed sets.
In contrast to this approach, we consider concrete evaluation strategies and our contexts come directly
from the reduction semantics (either call-by-name or call-by-value, and the contexts can be layered in
the delimited-control case), and in particular our reducibility candidates only contain values and are not
TT-closed. Another related work is the proof of strong normalization for Moggi’s computational calcu-
lus given by Lindley and Stark [23]] who have introduced the operation of TT-lifting in order to interpret
computational types. This operation seems to correspond to our definition of reducibility for one layer
of (reduction) contexts (see Section [2.3). However, in strong normalization, the notion of context is to
be understood as a means of syntactically splitting a term rather than “the remaining computation.” In
particular, we do not analyze the reducibility of terms forming reduction contexts.

The calculi we consider are System F with callcc under call by value and call by name as well
as System F with shift and reset under call by value and call by name, in each case with the standard
semantics, where, unlike in the ML-like semantics, evaluation does not proceed under polymorphic
abstraction [18]]. The type system for callcc is inspired by that of Harper and Lillibridge [18]], whereas
the type systems for shift and reset (one for each evaluation strategy) are new and they generalize Asai and
Kameyama’s type system [2] in that they allow for polymorphic abstractions over arbitrary expressions,
not only pure ones. It is worth noting that, as in the simply-typed case [3| 4], the context-based proofs
we present in this article have the structure of an evaluator in continuation-passing style.

We would like to stress that the semantics we consider in this article are not instances of abstract
machines working on explicit decompositions of terms, where the process of decomposition is built in
the transitions of the system. Instead, we rely on the higher-level reduction semantics approach where
the operations of decomposition and recomposition of terms are left implicit. Consequently, the type
systems we consider are in the form of natural deduction rather than in sequent calculus [[7].

The rest of this article is organized as follows. In Section[2] we present System F with abortive control
operators and we prove termination of evaluation under the call-by-value and call-by-name evaluation
strategies for this system. We also relate this result to Parigot’s work [25]. In Section [3| we present
System F with delimited-control operators and we prove termination of evaluation under call by value
and call by name. We also relate our type systems to Asai and Kameyama’s [2]. In Section ] we
conclude.
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2 System F with abortive control operators

In this section, we present a context-based proof of termination for call-by-value evaluation in System F
extended with the control operator callcc. We use a variant of Girard’s method of reducibility candidates,
where in particular we define reducibility predicates for reduction contexts.

2.1 Syntax and Semantics

We consider the explicitly typed System F under the call-by-value reduction strategy, which we extend
with the binder version of the callcc operator (denoted ") and with a construct to apply captured con-
tinuations <—, similar to the throw construct of SML/NIJ [[17]. We call this language /'Lf .

The syntax of terms, term types, and call-by-value contexts of A" is defined as follows:

Terms: ¢t == x| A5t | tt | AXt | t{S} | Kkt | k<>t | TEV<>t
Termtypes: S == X | S—S§ | VX.S
CBV contexts: E == [] | (AxS4)E | Et | E{S} | "TE"+E
Values: v u= AxSt | AX.t

We let x range over term variables, k range over continuation variables, and X range over type variables,
and we assume the three sets of variables are pairwise disjoint. We use capital letters starting from S to
denote term types. The term AX.r quantifies over the type variable X, while the term 7{S} instantiates
such quantification with type S. The term .# k.t denotes the callcc operator that binds a captured context
(representing a continuation) to the variable k£ and makes it available in its body ¢. In turn, constructs of
the form k <— ¢ and "E™' <— ¢ denote the operation of throwing the term ¢ to a continuation variable k and
to the captured context "E™, respectively. The use of " indicates that a context is reified as a term, as
opposed to its role as the representation of the “rest of the program.”

Expressions of the form "E™ <— ¢ are not allowed in source programs (because we do not let program-
mers handle contexts explicitly), but they may occur during evaluation. In the sequel, it will be useful to
distinguish the subset of plain terms, i.e., terms without any subterm of the form "E™ <— 1.

An abstraction Ax5.¢ (resp., AX.t, J# k.t) binds x (resp., X, k) in ¢, and a type VX.S binds X in S.
We write ftv(S) for the set of free type variables occurring in type S, defined in the usual way. The
definitions of free term variables, free type variables, and free continuation variables of a term are also
standard. A term is closed if it does not have any free variable of any kind. We identify terms and types
up to ¢-conversion of their bound variables.

The syntax of reduction contexts encodes the reduction strategy, here—call by value. The contexts
can be seen as “terms with a hole”, and are represented inside-out. Informally, [] denotes the empty
context, (Ax5.t) E represents E[(Ax5.t) []] with the hole indicated by [], E ¢ represents E[[]¢], E {S}
represents E[[|{S}], and "Ey " <= E represents E["Ey ' <= []]. A reduction context is closed if and only if
all its components (terms, types, or contexts) are closed. We make the meaning of contexts precise by
defining a function plug which maps a term and a context to the term which is obtained by putting the
term in the hole of the context:

plug (1,[]) = 1t
plug (to,(AxS1) E) = plug (Ax5.t)19,E)
plug (to,Et;) = plug (tot1,E)
plug (t,E{S}) = plug (1{S},E)
plug (t,"Ey" <= E) = plug ("Ey"' <> 1,E)
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We write E[t] for the result of plugging ¢ in the context E (i.e., the result of plug (¢,E)).

A program p is a closed plain term. When p = E[t], we say that p decomposes into term ¢ in the
context E. In general, a program can be decomposed into a term in a context in more than one way. For
example, the program (Ax5.ty) #; can be represented by term #; in context (Ax5.t) [], or by term (Ax5 1)
in context [] ¢, or by term (Ax5.ty) #; in context [].

The one-step reduction relation in the call-by-value strategy is defined on programs by the following

rules:
E[(Ax°.1)v] —v Elt{v/x}]  (B)
E[(AX0){S}] —v E[{S/X}]  (Br)
E[¢kt] —y E[H{"E7/k}] (
]

E/[Eg"<v] —yv Ep]y] (throw,,)

callcc)

where t{v/x} (resp., t{S/X}, t{"E7/k}) is the usual capture-avoiding substitution of value v (resp., of
type S, of context "E™) for variable x (resp., for X, for k) in ¢. The rules (,) and (f7) are standard
in System F; in addition, we introduce the rule (callcc), where the current context E is captured by
the callcc operator and bound to the continuation variable k, and the rule (throw,), where a previously
captured context Ejy is restored as the current context, and the context E; is discarded (the latter fact
shows the abortive character of the callcc operator). The plugged terms on the left-hand side of the
arrow in the above rules are called redexes, and are ranged over by r. Note that the reduction relation is
not compatible, i.e., it only applies to entire programs (due to the context capture in the rule (callcc)).

We define the call-by-value evaluation relation as the reflexive and transitive closure of the relation
—. The expected result of evaluation is a value.

The reduction relation — is deterministic; this property is ensured by the unique-decomposition
lemma. We could state this lemma in a general version for all terms, but in order to consider only well-
behaved programs and simplify the statement of the lemma, we choose to postpone it to the next section
where we define well-typed programs.

2.2 Type System

We define a type system for Af that is an extension of the type system for the lambda calculus introduced
by Biernacka and Biernacki [3], where types are assigned to terms as well as to contexts. The syntax of
context types is =S. Roughly, the type =S of a context E indicates that any well-typed term of type S
can be plugged in E. The answer type of a context need not be specified, and it is often taken to be L to
reflect the fact that continuations never return[] The answer type of a closed evaluation context E of type
—S can be determined by typing the expression E|[x] for a fresh variable x of type S.

We let I" range over type environments for term variables (i.e., lists of pairs of the form x:§), and we
let A range over type environments for continuation variables (i.e., lists of pairs of the form k:C). For
C=x1:81,.., % : Spand A=k :=Sy,..., ky : =Sy, we define fiv ([) := Ujeqy . o ftv (S;) and fiv (A) :=
Uic(1,..n}f1V (S;). The typing rules for terms and contexts are shown in Figure

We can now state the unique-decomposition lemma that ensures the determinism of the reduction
relation —, and progress of reduction:

Lemma 1 (Unique decomposition). For all well-typed programs p, p either is a value, or it decomposes
uniquely into a context E and a redex r, i.e., p = E[r].

I'This decision has more serious implications when a type system is studied from a logical perspective via the Curry-Howard
isomorphism (see for example [1]]). However, we do not take this viewpoint in this article.
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Typing terms (S :=X | S— T | VX.S):

Lx:SAFt: T ARt :S—T IAFH . S
Lx:S;AbFx:S CAFAS:: ST CAF ot : T
AFt:S X ¢frv(D) ARt :VX.S A k:=SE2:S
A AXt o VXS A E T} S{T/X} A Hkt @ S
GAk:-SHt:S AR E: =S AR S
A k: -SEk+t: T LAFTE '« T

Typing contexts (C ::= —S):
DAFAS::S—T TAFE:-T GAFt:S TARE: AT

AR []: =S A (AP0 E =S AFEt: ~(S—T)
AR E:—(S{T/X}) AR Ep: =S AR Ep T
;A F E{T}: —(VX.S) A TE) < E; : =S

Figure 1: Typing rules for System F with abortive control operators

As for the subject reduction property, it is a more subtle issue. In the reduction rule (throw,), the
current evaluation context Ej is replaced by another context Ey, where the answer types of the two
contexts do not have to be related in any way. Therefore, as observed before [3, [17, 30], in general
subject reduction does not hold for languages with reduction and typing rules for continuation invocation
similar to the ones presented in this work. However, if we assume that all reified contexts in a given term
have the same answer type as the type of the term itself—which is the case for all terms in the reduction
sequence starting in a plain term—subject reduction will be recovered [3} [17, 30]. Such an assumption
can be made implicit [[17] or explicit in a refined type system that controls the answer types of evaluation
contexts [3} 30]. It can be shown that from subject reduction of such a refined type system strong type
soundness for plain terms in the original type system follows [3. 30].

2.3 Termination

We now prove termination of the call-by-value evaluation for A, using a context variant of Girard’s
method of reducibility candidates [15]. Our definition of a reducibility candidate is simpler than in
Girard’s proof of strong normalization for system F, because we are interested only in the termination of
the call-by-value evaluation, not in strong normalization. Moreover, we exploit the structure of the call-
by-value continuation-passing style [16} 18} 26] that underlies the semantics of the language we consider,
and therefore the central role in the proof is played by predicates on evaluation contexts (representing
continuations) and on values, and not on arbitrary terms.
First, we define the normalization predicate .4"(p) as follows:

A (p) :=3Tv.p =4,

i.e., a program p normalizes (.4 (p) holds) if it reduces in several steps to a value.
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Definition 1 (Reducibility candidate). A reducibility candidate & of type S is any set of closed values of
type S.

We write Z% (S) for the set of reducibility candidates of type S. For each reducibility candidate #
of type S, we define the associated predicate 6 on closed contexts of type —S as follows:

C#(E) =Yv.ve X — N (E[V])

As in the original proof, we introduce the notion of parametric reducibility candidates. However, we
base our definition on the CPS interpretation of terms rather than on the direct-style interpretation. Let S
be a type, ftv(S) C X I T be a sequence of types of the same size as X, and % be such that Z; € #E (T, (T;).
We define the parametrlc reducibility candidate REDg [92 / X | by induction on S:

vEREDx[#/X] iff veZ
Vo € REDs, ,5,[#/X] iff Yvi.v| € REDs,[%#/X] — VE. CrEDs /%) (E) = AN (E[vovi])
v € REDy s[%#/X] iff YUN..7 € #€(U) — VE. %REDS[J 1%.71q(E) = N (EW{U}])

It is easy to see that REDs[%/X] € #%€ (S{T /X}). To prove the main result, we need a substitution
lemma.

Lemma 2. We have REDg1 /(% /X] = REDs|% /X ,RED7 (% /X] /c].

Proof. By induction on S. ]
We are now ready to state the main lemma:

Lemma 3. Lett be a plain term such that ;A ¢ 2 S, U=x1:T1, ..., %, : Ty, and A=k :-Uy, ..., ky

“Up. Let {Xi,...,X,} = ftv(S)Uftv(I) Uftv(A). Let V be a sequence of types of length p, and % be

reduczbzltty candldates such that %; € € (V;) foralli = 1,...,p. Let V be closed values such that -;- -
: T{V /X} and v; € RED7|% /X foralli=1,...,n. LetE be closed contexts such that ;- = E; : ~U;

and CreDy [J/X}(Ei) foralli=1,....m, and let E be such that ;- & E : =S and €, [%/X]( ). Then

N (E[t{V /x, ¥/%,"E"/k}]) holds.

Proof. By induction on ¢.

e Inthe case t = x;, we have 1{V /X ,%/%,"E7/k} = v;, as well as T; = S. Because v; € RED7[%/X],

by definition of G, 1% /x]( ), we have the required result.

e In the case t = AxS'.s, we have S =8§; — 5. Let s’ = S{V/)? V/X, '—E"—'/ic'} and S = §,{V/X};
then 1{V /X, %/%,"E"/k} = Ax51.5'. We now prove that Ax%.s' € REDs[%/X]; from that we can
deduce the required result by the definition of €, (E). Let v be such that v € REDs, [%# /X,

REDs[%/X)
and let E’ be such that ¢, 19/%) (E'). We have E'[(Ax%1.5')v] =, E'[s'{v/x}]. By the induction

hypothesis, we have A (E'[s {v/x}]) therefore .4 (E'[(Ax%1.s') v]) holds. Consequently, Ax51.s" €
REDg|% /X] as required.

e In the case t = 1o, we have ;A - #9 : ' — S and ;A F 11 @ 8 for some §'. Let 1) =
t0{V /X, %/%,"E1/k}, £} = n,{V /X ,¥/%,"E"/k}; then t{V /X,¥/%,"E"/k} = t}t,. We then have
E[ty11] = E 11]ty], and to conclude, we would like to apply the induction hypothesis to #y. To this

2Henceforth, for any metavariable m, we write /7 to range over sequences of entities denoted by .
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end, we have to prove that %REDS/ (/%) (E 1) holds. Let vy be such that vy € REDy_,s|%/X)].
We want to prove that .4#"(E {[v]) holds, which is equivalent to proving that .4 ((vo E)[r{]) holds.
Again, we want to prove this fact by using the induction hypothesis on #;, but to do this, we first

have to prove that ../, 1 %) (vo E) holds. Let v; be such that v; € REDg[%#/X]. Since we have

REDy
vo € REDg_,5|#/X] and %REDS[@/Q] (E), therefore .4 (E[vov]) holds, i.e.,we have .4 ((vo E)[v1]).
Consequently, €, Dy [4/%] (vo E) holds. Therefore, we can use the induction hypothesis on #; to

deduce that .4 ((vo E)[f{]) holds. As a result, we therefore have &,

/
rED, 7% (E 1) and we can

prove the required fact by using the induction hypothesis on #.

e Inthe caser = Ac.s, S = V.S forsome §'. Let s’ = s{V /X, v/%,"E"/k} and 1{V /X ,¥/%,"E" [k} =
Ac.s'. We now prove that Ac.s’ € REDs[%# /X]; the required result then holds by the definition of
%REDS[Q/X] (E). Let V' be a type and let Z' € #% (V). Let E' be such that CKREDS,[@/X%’/C] (E)

holds. We have E'[(Ac.s'){V'}] —v E'[s'{V'/c}]. By the induction hypothesis, we have that

N (E'[s'{V’/c}]) holds, therefore we obtain that .4 (E'[(Ac.s"){V'}]) holds as required.

e In the case t = fo{V'}, we have ;A F 1y : Ve.S" with § = §'{V’/c} for some §'. Let 1, =
10{V /X, V/%,"E7/k} and V" = V'{V /X }; we have t{V /X ¥/%,"E7/k} = t,{V"}, E[t){V"}] =
E {V"}[tj]. To conclude, we want to apply the induction hypothesis to 7y, but first we have to
prove that %REDvc,s/ /%) (E {V"}) holds. Let v be such that v € REDy.y¢[%#/X]. By Lemma ,

REDg v/ %/X] = REDy(% /X ,REDy/(% /X]/c] and hence Cppy, 155 pep, /%), (E) holds.

Besides, we have that REDy/[% /X] € %€ (V") holds, so by the definition of REDy, g% /X] we
obtain A (E[v{V"}]), i.e.,..#” (E {V"}[v]) holds. Therefore, %REDV,S/[@/Y(] (E {V"}) holds, hence
we have the required result by using the induction hypothesis on s.

e Supposet =% k.s. Lets' = s{V /X,¥/% "E7/k}. We then have the equality +{V /X ,¥/,"E7/k} =
Hk.s'. Since E[# k.s'] —y E[s'{"E"/k}], we obtain .4 (E[s'{"E"/k}]) by the induction hypothe-
sis, and therefore .4 (E[# k.s']) holds.

e Supposet =k; < s. Lets' = s{V /X ¥/%,"E7/k}. We then have the equality 1{V /X ,¥/%,"E"/k} =
FE;" <= s'. The program E["E;” < s'] is equivalent to ("E; += E)[s'], so we need to prove that

A ((TE;" <= E)|s']) holds, applying the induction hypothesis to s. To this end, we first prove that

CgREDUi[@/X}(I—E"—l < E) holds. Let v be such that v € REDy, [@/f(] The program ("E; <= E)[v]
is equivalent to E["E; " <= v]. We have E["E; " <= v| — E;[v], and since %, /%] (E;) holds, we

REDy;|
obtain .4 (E;[v]). Consequently, .4 (("E;” <= E)[v]) holds.
O

Theorem 1. If p is a well-typed program, then A (p) holds.

Proof. We have 64(|]) for any %, therefore we can use the previous lemma. O
The proof of Theorem I]is constructive and its computational content is a call-by-value evaluator for
plain terms in the continuation-passing style that is an instance of normalization by evaluation [3, i4].

2.4 Call by name

The proof method can be adapted to the call-by-name strategy, again by using a corresponding conti-
nuation-passing style interpretation of terms [16} [18], 26]. In this case, the syntax of reduction contexts
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becomes:
CBNcontexts: E == []| Et | E{S}

and the reduction rules are modified in that a lambda abstraction and a throwing operation can be applied
to an arbitrary term instead of only to a value, in the rules (f3,) and (throw,) below:

E[(Ax’10)ti] —m  Elto{ti/x}]  (By)

E[(AX.0{S}] —n El{S/X}]  (Br)
E[#kt] —n E[H{"E"/k}] (callcc)

E/"Ept«t] —n Eoff] (throw,,)

The type system is as before, except there are fewer rules for typing contexts. In the remainder of
this section we briefly point out the main differences in the proof of termination of evaluation between
the call-by-value and the call-by-name strategies.

A reducibility candidate of type S in call by name is a set of values of type S (where values are as in
call by value), and the definition of the associated predicate € is the same as in call by value, except
that the predicate .4 (-) is defined using the call-by-name reduction relation —,.

However, parametric reducibility candidates are defined in a substantially different way, reﬂectmg
the call-by-name strategy. Let S be a type, ftv(S) C X, Tbea sequence of types of the same size as X,
and Z be reducibility candidates such that each %; is of type T;. We define the parametric reducibility
candidate REDs[Z% /X] of type S{T /X} as follows:

vEREDy[%#/X] iff ve%
S REDS1—>S2 [%/X] iff Vi, QREDSI [@/f(] (t) — QRED [@/}?](vt)
v € REDy s|%/X) iff YUNY .7 € #E€(U) — VE. Crepgiii.z g (E) = A (EP{UY)

with
2y(t) =VE. €% (E) — AN (E[t])

The predicate 2 used in the second clause of this definition reflects the fact that a term given as argu-
ment to a function is not yet a value (whose reducibility is immediate), but it can be seen as a delayed
computation that may be forced later, by putting it in a context.

The main lemma is now formulated as follows:

Lemma 4. Lett be a plain term such that ;A ¢t : S, U=x1:T1, ..., %, : Ty, and A=ky: Uy, ..., ky

—U,. Let {Xi,...,X,} = ftv(S) Uftv(C) Uftv (A). Let V be a sequence of types of length p, and let
R be reduablllty candzdates such that #; € #€ (V;) for all i = 1,...,p. Let T be closed terms such
that ;- + t; - T{V/X} and 2 (t;) foralli=1,...,n Next, let E be closed contexts such

RED1.1%/X]
that ;- = E; : —U; and Gppp, [%/X( i) foralli=1,...,m, and let E be such that -;- - E : =S and
t

vz (E)- Then A (E[t{V /X, 7/%,E/k}]) holds.

The termination of call-by-name evaluation for well-typed programs follows from Lemma [ As
before, the computational content of the proof takes the form of an evaluator, only this time in the call-
by-name continuation-passing style.

In [25]], Parigot gives a proof of strong normalization for the second-order (i.e., with the types of
System F) A p-calculus using a variant of Girard’s method of reducibility candidates. Parigot’s proof and
ours share some similarities, even though the results are quite different in nature (strong normalization



M. Biernacka, D. Biernacki, S. Lenglet & M. Materzok 9

vs. termination of a particular strategy) and Parigot’s proof is more general in that it can be applied to
the implicitly typed as well as to the explicitly typed language. The key point in Parigot’s proof is the
following reducibility candidates characterization result: for all reducibility candidates Z, there exists a
set . of (possibly empty) finite sequences of strongly normalizing terms such that we have ¢ € Z iff for
all § € ., t 5 is strongly normalizing. The greatest such set .7 is denoted by %*. The characterization
result is then used to prove a lemma similar to Lemma 3]

The finite sequences of terms can be seen as (call-by-name) contexts in our setting. Moreover, we
notice that § € Z+ iff for all t € %, 5 is strongly normalizing; this resembles the definition of the
reducibility predicates on contexts %z in our proof. However, the terms in a sequence s have to be
strongly normalizing in Parigot’s proof, while we do not have a similar requirement on contexts. This
fact will have consequences for program extraction; the program extracted from our proof would be an
evaluator in CPS style where contexts (continuations) are passed around without being deconstructed (as
in [3I]).

3 System F with delimited control operators

In this section, we prove termination of the call-by-value evaluation in an extension of the explicitly
typed System F with the delimited control operators shift and reset of Danvy and Filinski [12]]. While the
abortive control operators such as callcc model jumps, shift and reset allow for delimited-control capture
and continuation composition.

3.1 Syntax and semantics

We extend the explicitly typed System F with the operators shift .7, reset (-), and throw <— . We call the
language l;_v. The syntax of terms, term types, contexts, and metacontexts of lgv is given as follows:

Terms: t u= x | A5t | ¢t | AXt | t{S} | Fkt | (t) | k<>t | TET <>t
Termtypes: S = X | Sg—sS | vX.§55
CBV contexts: E == [] | AS)E | Et | E{S} | "E"+E
Metacontexts: F o | E#F

The new term constructs are the shift operator .’k.t binding the continuation variable k in ¢, and a term
delimited by reset, denoted (¢). The remaining term constructs are as before. The (non-standard) syntax
of types is discussed in Section The syntax of reduction contexts is the same as in Section 2.1} and
terms are plugged in contexts using a function plug, defined in a similar manner as before.

The new syntactic category is that of metacontexts. A metacontext can be understood as a stack
of contexts: e is the empty metacontext and the metacontext E # F is obtained by pushing the context
E on top of F with each context in the stack separated from the rest by a delimiter. The meaning of
metacontexts is formalized through a function plug,,, defined below:

plug,, (t,8) = t
plug,, (t,E#F) = plug, ({plug (t,E)),F)
The result of plug,, (¢,F) is denoted by F|t].

Programs are closed plain terms delimited by a reset. A program p is subject to decompositions into
aterm 7, a context E and a metacontext F such that p = F[(E[t])].
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The call-by-value reduction relation on programs in l;.v is defined by the following rules:

FIE[AX.)v))] = FIE[{v/x}]] - (B)

FE[(AX.){S}])] —v FUE{S/X}])] (Br)

FUE[Z k)] =y FIG{TEV/KY)]  (shift)
FE[E™ <))] —v FH#E[E'V])]  (
FE[WD] —v FIED])] (

where values are defined as before. The first two reduction rules are standard (and insensitive to the
surrounding context and metacontext). The rule (shift) states that reducing k.t consists in capturing
the context E and substituting it for the continuation variable & in the body ¢ (the current context is then
set to be empty). When a captured context E’ is applied to a value (in the rule (throw,)), it is reinstated as
the current context, and the then-current context £ is pushed on the metacontext F. Finally, the last rule
states that when a value is enclosed in a reset, it means that the reset can be discarded since no further
captures can occur inside it.

The evaluation relation —7 is defined as before, where the expected result of evaluation is a program
value of the form (v).

throw,)

reset)

3.2 Type system

We add System F types to the type system of Biernacka and Biernacki [4], which is a slight modification
of the classical Danvy and Filinski’s type system for shift and reset [11]. The type system is presented in
Figure 2l In a type VX.ST'Y, the quantifier binds the occurrences of X in S, T, and U. We define the set
of free type variables fiv (S) of a term type S accordingly, and we define fiv (St>T') :=ftv(S) Uftv (T).

In this system, contexts are assigned types of the form St T, where S is the type of the hole and T
is the answer type, and metacontexts are assigned types of the form —S, where S is the type of the hole.
A typing judgment I';A|T + ¢ : S| U roughly means that under the assumptions I" and A, the term ¢
can be plugged into a context of type S> T and a metacontext of type —U (in general, the evaluation of
¢t may use the surrounding context of type ST to produce a value of type U, with T # U). Because
both abstractions Ax%.r and AX.t denote “frozen” computations—waiting for a term and a type, resp.,
to activate them—the arrow type and the V-type contain additional type annotations. Roughly, the type
Sy —v T is assigned to a function that can be applied to an argument of type S within a context of type
T > U and a metacontext of type —V. Similarly, the type ¥X.ST"V is assigned to a term that can be applied
to a type V within a context of type S{V /X } > T{V /X} and a metacontext of type ~U{V /X }. It can be
shown that closed well-typed terms either are values or decompose uniquely into a redex, a context and
a metacontext, and that the reduction rules preserve types.

The type system of Figure [2|is more liberal than the one defined for QLY/ rStd , a language defined by
Asai and Kameyama in [2]], which is similar to )LF ‘&~ In [2], polymorphic abstraction types do not contain
any additional type annotations, and can only be 7assigned to abstractions AX.tr where ¢ is a pure term,
i.e., a term such that I;A|T + ¢ : S| T is derivable for any T. Pure terms are terms free from control
effects, such as x, Ax5.1, (t), or AX.t. In contrast, we allow arbitrary abstractions of the form AX .z, at
the cost of additional type annotations in the polymorphic abstraction types. As pointed out by Asai

and Kameyama, restricting V-introduction to pure terms is not mandatory in a calculus with standard

s/r,Std

call-by-value evaluation, such as A, and our calculus. However, such restriction becomes necessary
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Typing terms (S ::=X | Sy —v T | vX.STV):

Cx:SA|URt:T|V
C,x:S;A|TFx:S|T CAWEF At Sy =y T|W

CAIXEty:Sy—wT|V CAWER:S|X ATt S|U X ¢fv(I)Uftv(A)

AU & oty : TV AV FAX:VX.STY |V
CAIU{V/X} 1 vX. STV | w AlUFt:U|S CiAk:S>T|VEL:V|U
CAIT{V/X} - t{V}:S{V/X}|W AT = (r) = S|T AT = Skt S|U
A k:S>T|UR: S|V AFE:S>T AU Rt S|V
A k:SOT|U R k<t :T|V AU FTE <=t : T|V

Typing contexts (C ::=S>T):
GAFE:T>U AV EL:SIW

AR :S>S AFEt: (Sy—=vT)>W
CAWRASt: Sy -y TIW  TARE:TU AFE:S{V/X}>T{V/X}
CAF (ASHE: SV AR E{VY VXSV >U{v/X}

[CAFE :S>T AFE:T>U
[AFTEV«—E:S>U

Typing metacontexts (D ::= —S):
AR E:S>T IGAF F: =T
INAF e: =S IAF E#F : =S

Figure 2: Typing rules for System F with delimited control operators under call by value

for the calculus AZS/ rML o [2] with ML-like call-by-value evaluation (where reduction is allowed under

A) for subject reduction to hold.

3.3 Termination

The proof of termination is very similar to that of Section [2.3] and here we only point out the main
differences. This time our development is based on the layered continuation-passing style for shift and
reset, where terms are passed two layers of continuations [[12]].

We define the normalization predicate .4 (p) as follows:

A (p):=3Tv.p—=7(v)

A reducibility candidate Z of type S is a set of closed values of type S. We write Z% (S) for the set of
reducibility candidates of type S. Let %, . be reducibility candidates of types S and T, respectively.
We define the predicate € o (E) on closed contexts of type St> T and the predicate .#(F) on closed
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metacontexts of type —S as follows:

Car(E) = VvveR—YF. My(F)— N (F[EN])])
Mp(F) = WveR— N(F[)])

Let S be a type, ftv(S) C X, Tbea sequence of types of the same size as X, and Z be reducibility candi-
dates such that each %; is of type T;. We now define the parametric reducibility candidate REDgs[% /X |
of type S{T'/X} as follows:

v € REDx,[%

X] iff ve%
vo € REDs,, ., 7|% /X

iff  Vvivi € REDS[Z/X] = VEGpup, 1% kepy /%)
VE .- Mpep, /%) (F) = A (F[(E[vovi1])])
v € REDy srulZ/X] iff VNI .S € RC(V) = VECypn 5% 0 xpsid g 1 (E) =

VE.- My py 1%, (F) = A (FIE{V}])])

i/
/ E) —

Using a substitution lemma similar to Lemma [2, we can prove the following result, from which the
termination theorem follows for closed plain terms:

Lemma 5. Let t be a plain term such that U;A|T Ft - S|\U, U=x1:Th, ..., %, : T, A=k :Cyy ..k
Co Let {X1,....X,} = fv(S) Uftv(T) Uty (U) Uftv (L) Uftv(A). Let V be a sequence of types of
length p, and let R be reducibility candidates such that %#; € %€ (V;). Let V be closed values such
that -;-|W & v; : T{V/X} |W and v; € REDy[%#/X] for each i. Let E be closed contexts such that

- FE G, C= Wi1 DWiz, and %REDWI.I [@/X],REDMZ[@/X](Ei) for each i. Let E be such that ;- +
E:S>T and %REDS[@/X].REDT[,@/X](E)‘ Let F be such that -;- = F : =U and 4, ﬁi?/f(](F)' Then

REDy|
N (FI(E[t{V /X %/, E[k}))]) holds.

Theorem 2. If p is a well-typed program, then A (p) holds.

Proof. We have € »([]) for any # and .4 (e) for any %, so we can use the previous lemma. O
Again, the computational content of this proof takes the form of an evaluator in CPS, this time with
two layers of continuations [4].

3.4 Call by name

The developments of the previous section can be easily adapted to the call-by-name strategy. Follow-
ing [4]], we modify the syntax of types to express the fact that functions accept not values, but suspended
computations expecting a continuation:

Terms: ¢ == x| A5 1] ...
Term types: § = X | $555 =58 | vX.§55

The syntax of reduction contexts is modified:

CBNcontexts: E == []| Et | E{S}
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The reduction rules are modified as in Section 2.4k

FIEI(AS" 1) n])] —n FUElofni/x}))] (By)

FIE[(AX-O{SH)] —n FIELS/XID] (Br)

FIRE[Zkt])] = FIG{"ET/kD] (shift)
FE[ET <= t])] —a FHE[ETTD]  (
FE[WD] —a FIED))] (

The typing rules for abstractions, function applications and throwing are changed, as in [4)]. The
modified rules for abstractions and function applications are as follows:

throw,,)

reset)

Cox:STYU AW R VX CAIXFr:SVy —sxV|Y TAITH4:S|U
CAY FAxS 870y 5y VY TA|W Ftot; 1 V|Y

We also modify the rules for typing contexts in a straightforward way.

We define reducibility candidates and the predicates 6 » and .# 7 as in call by value, the predicate
A (+) is defined using —,, the call by name reduction relation. The case for function types in the
definition of the parametric reducibility candidates is as in Section The definition of the QZ;? is
adapted to the language with shift and reset.

vEREDx[#/X] iff veZ
vEREDgru ., y[%/%] iff  Vi.@REPrAXLREDURIX] ), REDWIA/XLREDSA/X] 1)
wW—X :
7

<L

REDs[%/X)] REDy[%/X]

vEREDy gru|%#/X] iff YWN.Z.7 € #E (V) — VE. CrEDg(#/%.7 | REDy 3% /e

VE Mgy .01 (F) = A (FIER (V)

](E) -

with
25,7 (1) =VE. €, (E) — VF..ll 7(F) — A (F[(E[1])))

The main lemma is as follows:

Lemma 6. Let t be a plain term such that T;A|T =t : S|U, T :xl:SlT"U], ey Xp Shitn A —
ki:Ci, ..ok 2 G Let {X1,....X,} = ftv(S) Uftv (T) Uftv (U) Uftv (D) Uftv (A). Let V be a sequence of
types of length p, and let % be reducibility candidates such that %; € Z€ (V;). Let ¥ be closed terms such
S S SN REDr, % /X),REDy,|%/X] . -
that - |T{V/X} F ri : S{V/X}|U{V /X } and QRED R : (ri) for each i. Let E be closed
contexts such that ;- = E; : C;, C; = W' >W?, and%RED 1[1/)(] RED z[f/X ( E;) for each i. Let E be such
that -;- = E : ST and Gy, /X).RED: (5% (E). Let F be such that -; U and Mg, /%) (F).
Then N (F[(E[t{V /X ,#/%,E/k}])]) holds.

4 Conclusion and perspectives

We have shown that the context-based proof method developed by the first two authors for the simply-
typed lambda calculus with control operators, be they abortive or delimited, scales to much more expres-
sive type systems based on System F. The presented proofs are rather simple and elegant, and they do
not require a journey through an optimized CPS translation in order to show termination of evaluation
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for such calculi. Furthermore, if formalized in a logical framework equipped with program extraction
mechanism, they can lead to executable specifications of programming languages with control operators
and polymorphism—which is left as future work.

The proof method we have proposed is tailored towards characterization of termination in a wide
range of context-sensitive reduction semantics that account for arbitrary reduction strategies or advanced
control operators. For example, the proof of termination for delimited-control operators of Section [3|can
be straightforwardly generalized to a polymorphic version of the CPS hierarchy of Danvy and Filinski [6}
12]]. Similarly, we expect that one could consider a call-by-need version of System F, e.g., based on [[13]]
and readily apply the context-based method to it. Such results do not seem to be immediately obtainable
in other frameworks, e.g., using orthogonality techniques.

Acknowledgments: We thank the anonymous reviewers for detailed and insightful comments on
several versions of this article. This work has been partially supported by Polish NCN grant number
DEC-011/03/B/ST6/00348.
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