A Model of Control Operators in Coherence Spaces giving rise to a New Model of Classical Set Theory

Thomas Streicher

Eindhoven, June 2013

We revisit domain-theoretic models D of λ_{cc} , i.e. λ -calculus with control, and study the ensuing classical realizability models in the sense of J.-L. Krivine.

For this purpose, however, we have to identify a submodel $P \subseteq D$ of *error-free* elements. The existence of such a submodel is guaranteed by a theorem of A. Pitts.

If we start from a model D for λ_{cc} in Scott domains we just get Set, i.e. nothing new. However, when starting from a model in Coh, i.e. coherence spaces and stably continuous maps, we get a new boolean topos providing a model of ZF with restricted choice.

Domain Models of λ_{cc} (1)

Consider $D \cong \Sigma^{D^{\omega}}$ in **some** category of domains. Since $D \cong D^{D}$ the domain D gives rise to a model of *untyped* λ -*calculus* and thus to a *partial combinatory algebra* (pca).

In [SR98] it was shown that D also allows one to interpret control operators as

 $cc(t.\vec{s}) = t(k_{\vec{s}}.\vec{s})$ where $k_{\vec{s}}(t.\vec{r}) = t(\vec{s})$

where \vec{s} and \vec{r} are elements of D^{ω} thought of as *continuations*.

The domain $\Sigma = \{ \bot \sqsubset \top \}$ is the domain of *observations* where \bot represents *nontermination* and \top is thought of as an *error* element.

When a "program" $t \in D$ meets a "continuation" $\vec{s} \in D^{\omega}$ it results in an "observation" $t(\vec{s}) \in \Sigma$.

The set $\bot = \{(t, \vec{s}) \mid t(\vec{s}) = \top\}$ is called **pole** and gives rise to a *Galois* connection between sets of programs and sets of continuations

$$A^{\perp} = \{ \vec{s} \in D^{\omega} \mid \forall t \in A. \ t \perp \vec{s} \} \qquad C^{\perp} = \{ t \in D \mid \forall \vec{s} \in C. \ t \perp \vec{s} \}$$

where $A \subseteq D$ and $C \subseteq D^{\omega}$.

In Krivine's Classical Realizability propositions are biorthogonally closed subsets of D, i.e. $A \subseteq D$ with $A^{\perp \perp} = A$. Thus propositions are always inhabited by $\top_D = \lambda \vec{s} . \top \in D$. For this reason we need a

Submodel *P* of "error-free" programs

By a theorem of A. Pitts there exists a unique subset P of D with

 $t \in P$ iff $\forall \vec{s} \in P^{\omega} . t(\vec{s}) = \bot$

i.e. $t \in P$ iff from $t(\vec{s}) = \top$ it follows that some $s_n \notin P$. The elements of P are called "error-free" or "proof-like".

One easily shows that P is a subpca of D.

If $C \subseteq D^{\omega}$ with $C \cap P^{\omega} \neq \emptyset$ then $C^{\perp} \cap P = \emptyset$, i.e. the proposition C^{\perp} does not have a proof-like realizer, which prevents us from inconsistency.

But before diving into classical realizability we introduce the *relative* realizability model RT(D, P) whose logic is still *intuitionistic*.

The Relative Realizability Model (1)

Its propositions are subsets of D. For $\varphi, \psi \in \mathcal{P}(D)$ let

 $\varphi \to \psi = \{t \in D \mid \forall s \in \varphi. \ ts \in \psi\}$

For predicates $\varphi, \psi \in \mathcal{P}(D)^I$ on set I we define entailment as

 $\varphi \vdash_{I} \psi \qquad \text{iff} \qquad \exists t \in P. \forall i \in I. \forall s \in \varphi_i. \ ts \in \psi_i$

i.e. iff $\bigcap_{i\in I} \varphi_i \to \psi_i$ has non-empty intersection with P. For $\varphi \in \mathcal{P}(D)^{I \times J}$ we define universal quantification as

$$\forall i: I. \varphi(i, j) = \bigcap_{i \in I} \varphi(i, j)$$

For a set I the equality predicate $eq_I \in \mathcal{P}(D)^{I \times I}$ on I is defined as

$$eq_I(i,j) = \{d \in D \mid i = j\}$$

The Relative Realizability Model (2)

à la Russell-Prawitz one may define the remaining connectives by their second order encoding. This gives rise to a **tripos** \mathscr{P} over Set whose fibre over I is $\mathcal{P}(D)^{I}$ pre-ordered by \vdash_{I} .

From \mathscr{P} like from any tripos we can construct the associated topos which in our case we call $\mathcal{E} = \mathsf{RT}(D, P)$.

Objects of \mathcal{E} are pairs $X = (|X|, E_X)$ where |X| is the underlying set and $E_X \in \mathcal{P}(D)^{|X| \times |X|}$ is symmetric and transitive in the sense of \mathscr{P} . A morphism from X to Y is given by a predicate $F \in \mathcal{P}(D)^{|X| \times |Y|}$ s.t.

$$F(x,y) \vdash E_X(x,x) \land E_Y(y,y) \qquad F(x,y) \land E_X(x,x') \land E_Y(y,y') \vdash F(x',y')$$

$$F(x,y) \land F(x,y') \vdash E_Y(y,y') \qquad E_X(x,x) \vdash \bigcup_{y \in |Y|} F(x,y)$$

holds in the sense of \mathscr{P} . Logically equivalent F's are identified.

${\mathcal E}$ hosts a model of IZF

On the class V of all sets we define $\mathcal{P}(D)$ -valued binary predicates \subseteq and \in by mutual transfinite recursion as follows

 $x \subseteq y \equiv \forall z \in V. \ x(z) \rightarrow z \in y$ $x \in y \equiv \exists z \in V. \ x = z \land y(z)$

where x = y stands for $x \subseteq y \land y \subseteq x$ and $x(z) = \{t \in D \mid \langle z, t \rangle \in x\}$.

One can show that this model validates all axioms of IZF, i.e. Intuitionistic Zermelo Fraenkel Set Theory.

This model construction is reminiscent of Scott and Solovay's **boolean valued models** but order on predicates is *uniform* and not pointwise.

Getting Boolean (1)

In \mathcal{E} we have true = D and $false = \emptyset$. But there is a further truth value $U = \{\top_D\}$. We define $\neg_U : \Omega_{\mathcal{E}} \to \Omega_{\mathcal{E}}$ as $\neg_U A = A \to U$. Then $j_U = \neg_U \circ \neg_U$ is a Lawvere-Tierney topology on \mathcal{E} . The topos $\mathcal{E}_U = \mathcal{E}_{j_U}$ of j_U -sheaves is a boolean.

For staying "self-contained" we give an "elementary" reconstruction. Consider the subtripos \mathscr{P}_U of \mathscr{P} consisting of those $\varphi \in \mathcal{P}(D)^I$ such that $\neg_U \neg_U \varphi \vdash_I \varphi$ holds in \mathscr{P} . They are closed under implication and universal quantification.

Notice that $\neg_U \neg_U eq_I(i,j) = \{\top_D\} \cup \{d \in D \mid i = j \text{ and } d\top_D = \top_D\}$ is an equality predicate on I for \mathscr{P}_U , i.e.

$$\neg_U \neg_U eq_I(i,j) \vdash \varrho(i,j) \quad \text{iff} \quad \vdash \varrho(i,i)$$

Getting Boolean (2)

The boolean topos \mathcal{E}_U is equivalent to the classical realizability topos \mathcal{K} induced by the following classical realizability structure. Its set Λ of terms is D and its set Π of stacks is D^{ω} . Application is given by $(t_1t_2)(\vec{s}) = t_1(t_2.\vec{s})$. The control operator is given by

 $cc(t.\vec{s}) = t(k_{\vec{s}}.\vec{s})$ where $k_{\vec{s}}(t.\vec{r}) = t(\vec{s})$

and one easily sees that $cc \in P$. The **pole** is given by $t \perp \vec{s}$ iff $t(\vec{s}) = \top$ and *P* is the set of **proof-like** terms.

Notice that $\neg_U A = (A.D^{\omega})^{\perp}$ and cc realizes $j_U A \to A^{\perp \perp}$. Thus, the tripos \mathscr{P}_U is equivalent to the classical realizability tripos $\mathscr{P}_{\mathcal{K}}$ induced by the above classical realizability structure. It consists of families of biorthogonally closed subsets of D.

Thus \mathcal{E}_U is equivalent to \mathcal{K} , the topos induced by $\mathscr{P}_{\mathcal{K}}$.

For *D* in Scott Domains we have $\mathcal{K} \simeq Set$

Let *D* be the bifree solution of $D = \Sigma^{D^{\omega}}$ in Scott domains. Then $P \subseteq D$ contains a greatest element $\Phi = \bigsqcup P$ since $\lor : \Sigma \times \Sigma \to \Sigma$ ("parallel or") is Scott continuous.

Thus, for every biorthogonally closed $A \subseteq D$ we have that A is true, i.e. $A \cap P \neq \emptyset$, iff $\Phi \in A$. This allows us to show that

 $\vDash_{\mathcal{K}} A \to B \quad \text{iff} \quad \vDash_{\mathcal{K}} A \text{ implies } \vDash_{\mathcal{K}} B$ and thus $\left(\mathscr{P}_{\mathcal{K}}^{I}, \vdash_{I}\right)$ is equivalent to $\left(\mathcal{P}(I), \subseteq\right)$. Thus, we have $\mathcal{K} \simeq \text{Set}$, i.e. nothing new.

Since "parallel or" is the culprit and it is not stable we now look at

$D \cong \Sigma^{D^{\omega}}$ in Coherence Spaces (1)

Since coherence spaces and stable linear maps are a model of classical linear logic we have $\Sigma^{D^{\omega}} = (!(D^{\omega}))^{\perp}$. This suggests the following concrete construction of D (inspired by Krivine).

Let S be the least set with $S = \mathcal{P}_{fin}(\omega \times S)$. For $\alpha \in S$ and $n \in \omega$ let $\alpha_n = \{\beta \in S \mid \langle n, \beta \rangle \in \alpha\}$. By mutual recursion we define |D| and \Box as

$$\alpha \in |D|$$
 iff $\forall n \in \omega. \forall \beta, \gamma \in \alpha_n. \beta \circ \gamma$

$$\alpha \circ \beta$$
 iff $\alpha \cup \beta \in |D|$ implies $\alpha = \beta$.

The relation \bigcirc on |D| is reflexive and symmetric. The domain D consists of cliques ordered by subset inclusion.

Notice that elements of D are *anti-chains* in |D|, i.e. $t \subseteq |D|$ such that for $\alpha, \beta \in t$, $\alpha \cup \beta \in |D|$ implies $\alpha = \beta$. One easily sees that elements of D^{ω} correspond to downward closed ideals in $(|D|, \subseteq)$.

$D \cong \Sigma^{D^{\omega}}$ in Coherence Spaces (2)

The ensuing pole is given by

 $t \perp \vec{s}$ iff $\exists \alpha \in t. \forall n \in \omega. \ \alpha_n \subseteq s_n$

and application is given by

 $t_1 t_2 = \{ \alpha \in |D| \mid \exists a \subseteq_{\mathsf{fin}} t_2. \ a.\alpha \in t_1 \}$

where $a.\alpha = (\{0\} \times a) \cup \{\langle n+1, \beta \rangle \mid \beta \in \alpha_n\}.$

With every $\alpha \in |D|$ we associate $|\alpha| \in \{0, 1\}$ recursively as follows

$$|\alpha| = 1$$
 iff $\exists n \in \omega . \exists \beta \in \alpha_n . |\beta| = 0$

and define P as the set of all $t \in D$ with $|\alpha| = 1$ for all $\alpha \in t$. It is easy to show that P meets its specification. In the full paper we have shown that

1) subtoposes of $\mathcal E$ having small sums are equivalent to Set

2) \mathcal{K} is not equivalent to Set

and, thus, the topos ${\mathcal K}$ cannot be a Grothendieck topos or even a forcing model.

$\mathbb N$ within D

Notice that \top_D is an atom in D w.r.t. the stable order. Thus, for $n \in \mathbb{N}$ there is a unique $\overline{n} \in D$ with

$$\bar{n}(\vec{s}) = \top$$
 iff $s_n = \top_D$

which is also atomic.

Notice that there is a least stable retract $r: D \to D$ below id_D fixing precisely \perp_D , \top_D and $\overline{0}$. Since i is a maximal element above $\overline{0}$ there is a least stable retract $\tilde{r}: D \to D$ fixing precisely \perp_D , \top_D and i and sending $\overline{0}$ to i. One knows from Asperti and Longo's book that $!(\mathbb{T}^{\omega})$ is universal for ωCoh , i.e. countably based coherence spaces.

Since \mathbb{T} embeds into D the coherence space $!(\mathbb{T}^{\omega})$ embeds into $!(D^{\omega})$. Thus $!(D^{\omega})$ is universal for $\omega \mathbf{Coh}$.

Accordingly, we have that $D = (!(\mathbb{T}^{\omega}))^{\perp}$ is also universal for ωCoh .

${\cal K}$ validates all true sentences of PA

The nno N of ${\cal K}$ has underlying set ω and

$$\llbracket n =_N m \rrbracket = \uparrow \top_D \cup \uparrow \{ \bar{n} \mid n = m \}$$

Since for every $f: \omega \to D$ there is a $t_f \in D$ with $t_f \bar{n} = f(n)$ the topos \mathcal{K} validates the ω -rule:

a sentence $\forall n: N.A(n)$ holds in \mathcal{K} iff A(n) holds in \mathcal{K} for all $n \in \omega$.

Thus \mathcal{K} validates all true arithmetic sentences in prenex normal form and thus all true sentences of first order arithmetic since \mathcal{K} is boolean.

Finite Type Hierarchy over N in \mathcal{K}

Let 2 be the object with underlying set $2 = \{0, 1\}$

$$\llbracket i =_2 j \rrbracket = \uparrow \top_D \cup \uparrow \{\overline{i} \mid i = j\}$$

which is isomorphic to $2 = 1 + 1 \in \mathcal{K}$.

Since \mathcal{K} is boolean we have $2 \cong \Omega_{\mathcal{K}}$.

Thus N contains $\Omega_{\mathcal{K}}$ as a subobject.

Accordingly, N^X contains $\mathcal{P}(X)$ as a subobject explaining why the finite type hierarchy over N is so difficult to grasp in classical realizability toposes.

Leibniz Equality and $\Delta : \operatorname{Set} \to \mathcal{K}$

In \mathcal{K} for a set I equality on I is given by

$$eq_I(i,j) = \uparrow \top_D \cup \uparrow \{\overline{\mathbf{0}} \mid i=j\}$$

since $\neg_U \neg_U \emptyset = \uparrow \top_D$ and $\neg_U \neg_U D = \{t \in D \mid t \top_D = \top_D\} = \uparrow \{\top_D, \overline{0}\}.$

Via \tilde{r} the predicate eq_I is equivalent to the predicate

$$\widetilde{eq}_I(i,j) = \uparrow \top_D \cup \uparrow \{i \mid i = j\} = \{\top_D\} \cup \{i \mid i = j\}$$

since both \top_D and i are maximal.

For every set *I* let $\Delta(I) = (I, \tilde{eq}_I)$ giving rise to the well known **constant object** functor $\Delta : \text{Set} \to \mathcal{K}$.

$\Delta(2)$ is Dedekind infinite

Krivine has shown (2012) that in \mathcal{K} the object $\Delta(2)$ is infinite. But is it *D*-infinite, i.e. is there an injection $N \rightarrow \Delta(2)$?

If not this would imply that \mathcal{K} does not validate Countable Choice which allows one to show that every infinite object is D-infinite.

But one can show – using bar recursion and induction – that \mathcal{K} validates countable (and dependent) choice from which it follows that \mathcal{K} validates the proposition that there is a 1-1 map from N to $\Delta(2)$.

However, there does not seem to exist a monomorphism $N \rightarrow \Delta(2)$ in \mathcal{K} witnessing this existential statement. Localic toposes are 2-valued iff they are equivalent to Set. Since classical realizability toposes generalize forcing models they need not be 2-valued as is the case for realizability toposes.

For $D \cong \Sigma^{D^{\omega}}$ and P we don't know the answer. Notice that via *trace* elements of D correspond to antichains of **finite** elements in D^{ω} and elements of P to antichains whose intersection with PL^{ω} is empty.

If $A = A^{\perp \perp} \subseteq D$ contains an element of PL then $A^{\perp} \cap P^{\omega} = \emptyset$.

Does the reverse implication hold?

We don't know in general but if $A^{\perp} = \{t_n \mid n \in \omega\}^{\perp}$ doesn't contain an element of P^{ω} then $A^{\perp \perp} \cap P \neq \emptyset$.

Proof

W.I.o.g. assume $t_{n+1}^{-1}(\top) \subseteq t_n^1(\top)$ then we get a tree all whose infinite paths land in the complement of P^{ω} . Since $D^{\omega} \setminus P^{\omega}$ is open we get a well-founded tree all whose leaves are in $D^{\omega} \setminus P^{\omega}$ which set is the trace of a $t \in \mathsf{PL}$ with $t^{-1}(\top) \supseteq A^{\perp}$, i.e. $t \in A^{\perp \perp}$. \Box

Presumably, full Axiom of Choice does not hold in \mathcal{K} . But we don't have a proof so far.

But, possibly, instances of Choice are not decided by ${\cal K}$

There is an obvious notion of computability for D since |D| can be coded by \mathbb{N} in such a way that \bigcirc is decidable. Computable elements are r.e. coherent subsets of |D| w.r.t. this coding.

How much does this alter the ensuing classical realizability model?