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We revisit domain-theoretic models D of λcc, i.e. λ-calculus with con-

trol, and study the ensuing classical realizability models in the sense

of J.-L. Krivine.

For this purpose, however, we have to identify a submodel P ⊆ D of

error-free elements. The existence of such a submodel is guaranteed

by a theorem of A. Pitts.

If we start from a model D for λcc in Scott domains we just get Set,

i.e. nothing new. However, when starting from a model in Coh, i.e.

coherence spaces and stably continuous maps, we get a new boolean

topos providing a model of ZF with restricted choice.
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Domain Models of λcc (1)

Consider D ∼= ΣDω
in some category of domains. Since D ∼= DD the

domain D gives rise to a model of untyped λ-calculus and thus to a

partial combinatory algebra (pca).

In [SR98] it was shown that D also allows one to interpret control

operators as

cc(t.~s) = t(k~s.~s) where k~s(t.~r) = t(~s)

where ~s and ~r are elements of Dω thought of as continuations.

The domain Σ = {⊥ ⊏ ⊤} is the domain of observations where ⊥

represents nontermination and ⊤ is thought of as an error element.
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Domain Models of λcc (2)

When a “program” t ∈ D meets a “continuation” ~s ∈ Dω it results in

an “observation” t(~s) ∈ Σ.

The set ‚ = {(t, ~s) | t(~s) = ⊤} is called pole and gives rise to a Galois

connection between sets of programs and sets of continuations

A‚ = {~s ∈ Dω | ∀t ∈ A. t ‚ ~s} C‚ = {t ∈ D | ∀~s ∈ C. t ‚ ~s}

where A ⊆ D and C ⊆ Dω.

In Krivine’s Classical Realizability propositions are biorthogonally closed

subsets of D, i.e. A ⊆ D with A‚‚ = A. Thus propositions are always

inhabited by ⊤D = λ~s.⊤ ∈ D. For this reason we need a
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Submodel P of “error-free” programs

By a theorem of A. Pitts there exists a unique subset P of D with

t ∈ P iff ∀~s ∈ Pω. t(~s) = ⊥

i.e. t ∈ P iff from t(~s) = ⊤ it follows that some sn 6∈ P .

The elements of P are called “error-free” or “proof-like”.

One easily shows that P is a subpca of D.

If C ⊆ Dω with C∩Pω 6= ∅ then C‚∩P = ∅, i.e. the proposition C‚ does

not have a proof-like realizer, which prevents us from inconsistency.

But before diving into classical realizability we introduce the relative

realizability model RT(D,P ) whose logic is still intuitionistic.
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The Relative Realizability Model (1)
Its propositions are subsets of D. For ϕ,ψ ∈ P(D) let

ϕ→ ψ = {t ∈ D | ∀s ∈ ϕ. ts ∈ ψ}

For predicates ϕ,ψ ∈ P(D)I on set I we define entailment as

ϕ ⊢I ψ iff ∃t ∈ P.∀i ∈ I.∀s ∈ ϕi. ts ∈ ψi

i.e. iff
⋂
i∈I

ϕi → ψi has non-empty intersection with P .

For ϕ ∈ P(D)I×J we define universal quantification as

∀i:I.ϕ(i, j) =
⋂

i∈I

ϕ(i, j)

For a set I the equality predicate eqI ∈ P(D)I×I on I is defined as

eqI(i, j) = {d ∈ D | i = j}
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The Relative Realizability Model (2)

à la Russell-Prawitz one may define the remaining connectives by their

second order encoding. This gives rise to a tripos P over Set whose

fibre over I is P(D)I pre-ordered by ⊢I.

From P like from any tripos we can construct the associated topos

which in our case we call E = RT(D,P ).

Objects of E are pairs X = (|X|, EX) where |X| is the underlying set

and EX ∈ P(D)|X|×|X| is symmetric and transitive in the sense of P.

A morphism from X to Y is given by a predicate F ∈ P(D)|X|×|Y | s.t.

F (x, y) ⊢ EX(x, x) ∧ EY (y, y) F (x, y) ∧ EX(x, x′) ∧ EY (y, y
′) ⊢ F (x′, y′)

F (x, y) ∧ F (x, y′) ⊢ EY (y, y
′) EX(x, x) ⊢

⋃

y∈|Y |
F (x, y)

holds in the sense of P. Logically equivalent F ’s are identified.
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E hosts a model of IZF

On the class V of all sets we define P(D)-valued binary predicates ⊆

and ∈ by mutual transfinite recursion as follows

x ⊆ y ≡ ∀z ∈ V. x(z) → z ∈ y x ∈ y ≡ ∃z ∈ V. x = z ∧ y(z)

where x = y stands for x ⊆ y ∧ y ⊆ x and x(z) = {t ∈ D | 〈z, t〉 ∈ x}.

One can show that this model validates all axioms of IZF, i.e. Intu-

itionistic Zermelo Fraenkel Set Theory.

This model construction is reminiscent of Scott and Solovay’s boolean

valued models but order on predicates is uniform and not pointwise.
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Getting Boolean (1)

In E we have true = D and false = ∅.

But there is a further truth value U = {⊤D}.

We define ¬U : ΩE → ΩE as ¬UA = A→ U .

Then jU = ¬U ◦ ¬U is a Lawvere-Tierney topology on E.

The topos EU = EjU of jU-sheaves is a boolean.

For staying “self-contained” we give an “elementary” reconstruction.

Consider the subtripos PU of P consisting of those ϕ ∈ P(D)I such

that ¬U¬Uϕ ⊢I ϕ holds in P. They are closed under implication and

universal quantification.

Notice that ¬U¬UeqI(i, j) = {⊤D} ∪ {d ∈ D | i = j and d⊤D = ⊤D} is

an equality predicate on I for PU , i.e.

¬U¬UeqI(i, j) ⊢ ̺(i, j) iff ⊢ ̺(i, i)
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Getting Boolean (2)
The boolean topos EU is equivalent to the classical realizability

topos K induced by the following classical realizability structure.

Its set Λ of terms is D and its set Π of stacks is Dω. Application is

given by (t1t2)(~s) = t1(t2.~s). The control operator is given by

cc(t.~s) = t(k~s.~s) where k~s(t.~r) = t(~s)

and one easily sees that cc ∈ P . The pole is given by t ‚ ~s iff t(~s) = ⊤

and P is the set of proof-like terms.

Notice that ¬UA = (A.Dω)‚ and cc realizes jUA → A‚‚. Thus, the

tripos PU is equivalent to the classical realizability tripos PK induced

by the above classical realizability structure. It consists of families of

biorthogonally closed subsets of D.

Thus EU is equivalent to K, the topos induced by PK.
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For D in Scott Domains we have K ≃ Set

Let D be the bifree solution of D = ΣDω
in Scott domains. Then

P ⊆ D contains a greatest element Φ =
⊔
P since ∨ : Σ × Σ → Σ

(“parallel or”) is Scott continuous.

Thus, for every biorthogonally closed A ⊆ D we have that A is true,

i.e. A ∩ P 6= ∅, iff Φ ∈ A. This allows us to show that

�K A→ B iff �K A implies �K B

and thus
(
PI

K,⊢I
)
is equivalent to

(
P(I),⊆

)
.

Thus, we have K ≃ Set, i.e. nothing new.

Since “parallel or” is the culprit and it is not stable we now look at
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D ∼= ΣDω
in Coherence Spaces (1)

Since coherence spaces and stable linear maps are a model of classical

linear logic we have ΣDω
= (!(Dω))⊥. This suggests the following

concrete construction of D (inspired by Krivine).

Let S be the least set with S = Pfin(ω × S). For α ∈ S and n ∈ ω let

αn = {β ∈ S | 〈n, β〉 ∈ α}. By mutual recursion we define |D| and ¨ as

α ∈ |D| iff ∀n∈ω.∀β, γ ∈ αn. β ¨ γ

α ¨ β iff α ∪ β ∈ |D| implies α = β.

The relation ¨ on |D| is reflexive and symmetric. The domain D

consists of cliques ordered by subset inclusion.

Notice that elements of D are anti-chains in |D|, i.e. t ⊆ |D| such that

for α, β ∈ t, α ∪ β ∈ |D| implies α = β. One easily sees that elements

of Dω correspond to downward closed ideals in (|D|,⊆).
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D ∼= ΣDω
in Coherence Spaces (2)

The ensuing pole is given by

t ‚ ~s iff ∃α ∈ t.∀n ∈ ω. αn ⊆ sn

and application is given by

t1t2 = {α ∈ |D| | ∃a ⊆fin t2. a.α ∈ t1}

where a.α = ({0} × a) ∪ {〈n+1, β〉 | β ∈ αn}.

With every α ∈ |D| we associate |α| ∈ {0,1} recursively as follows

|α| = 1 iff ∃n∈ω.∃β ∈ αn. |β| = 0

and define P as the set of all t ∈ D with |α| = 1 for all α ∈ t.

It is easy to show that P meets its specification.
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K not even Grothendieck

In the full paper we have shown that

1) subtoposes of E having small sums are equivalent to Set

2) K is not equivalent to Set

and, thus, the topos K cannot be a Grothendieck topos or even a

forcing model.
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N within D

Notice that ⊤D is an atom in D w.r.t. the stable order.

Thus, for n ∈ N there is a unique n̄ ∈ D with

n̄(~s) = ⊤ iff sn = ⊤D

which is also atomic.

Notice that there is a least stable retract r : D → D below idD fixing

precisely ⊥D, ⊤D and 0̄.

Since i is a maximal element above 0̄ there is a least stable retract

r̃ : D → D fixing precisely ⊥D, ⊤D and i and sending 0̄ to i.
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D universal for ωCoh

One knows from Asperti and Longo’s book that !(Tω) is universal for

ωCoh, i.e. countably based coherence spaces.

Since T embeds into D the coherence space !(Tω) embeds into !(Dω).

Thus !(Dω) is universal for ωCoh.

Accordingly, we have that D = (!(Tω))⊥ is also universal for ωCoh.
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K validates all true sentences of PA

The nno N of K has underlying set ω and

Jn =N mK = ↑⊤D ∪ ↑{n̄ | n = m}

Since for every f : ω → D there is a tf ∈ D with tf n̄ = f(n) the topos

K validates the ω-rule:

a sentence ∀n:N.A(n) holds in K iff A(n) holds in K for all n ∈ ω.

Thus K validates all true arithmetic sentences in prenex normal form

and thus all true sentences of first order arithmetic since K is boolean.
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Finite Type Hierarchy over N in K

Let 2 be the object with underlying set 2 = {0,1}

Ji =2 jK = ↑⊤D ∪ ↑{̄i | i = j}

which is isomorphic to 2 = 1+ 1 ∈ K.

Since K is boolean we have 2 ∼= ΩK.

Thus N contains ΩK as a subobject.

Accordingly, NX contains P(X) as a subobject explaining why the

finite type hierarchy over N is so difficult to grasp in classical realiz-

ability toposes.
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Leibniz Equality and ∆ : Set → K

In K for a set I equality on I is given by

eqI(i, j) = ↑⊤D ∪ ↑{0̄ | i = j}

since ¬U¬U∅ = ↑⊤D and ¬U¬UD = {t ∈ D | t⊤D = ⊤D} = ↑{⊤D, 0̄}.

Via r̃ the predicate eqI is equivalent to the predicate

ẽqI(i, j) = ↑⊤D ∪ ↑{i | i = j} = {⊤D} ∪ {i | i = j}

since both ⊤D and i are maximal.

For every set I let ∆(I) = (I, ẽqI) giving rise to the well known

constant object functor ∆ : Set → K.

18



∆(2) is Dedekind infinite

Krivine has shown (2012) that in K the object ∆(2) is infinite. But

is it D-infinite, i.e. is there an injection N  ∆(2)?

If not this would imply that K does not validate Countable Choice

which allows one to show that every infinite object is D-infinite.

But one can show – using bar recursion and induction - that K vali-

dates countable (and dependent) choice from which it follows that K

validates the proposition that there is a 1-1 map from N to ∆(2).

However, there does not seem to exist a monomorphism N  ∆(2)

in K witnessing this existential statement.
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Is K 2-valued?

Localic toposes are 2-valued iff they are equivalent to Set. Since

classical realizability toposes generalize forcing models they need not

be 2-valued as is the case for realizability toposes.

For D ∼= ΣDω
and P we don’t know the answer. Notice that via trace

elements of D correspond to antichains of finite elements in Dω and

elements of P to antichains whose intersection with PL
ω is empty.

If A = A‚‚ ⊆ D contains an element of PL then A‚ ∩ Pω = ∅.

Does the reverse implication hold?

20



A Partial Answer

We don’t know in general but if A‚ = {tn | n ∈ ω}‚ doesn’t contain

an element of Pω then A‚‚ ∩ P 6= ∅.

Proof

W.l.o.g. assume t−1
n+1(⊤) ⊆ t1n(⊤) then we get a tree all whose infinite

paths land in the complement of Pω. Since Dω \ Pω is open we get

a well-founded tree all whose leaves are in Dω \ Pω which set is the

trace of a t ∈ PL with t−1(⊤) ⊇ A‚, i.e. t ∈ A‚‚. �
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Some Open Questions

Presumably, full Axiom of Choice does not hold in K. But we don’t

have a proof so far.

But, possibly, instances of Choice are not decided by K

There is an obvious notion of computability for D since |D| can be

coded by N in such a way that ¨ is decidable. Computable elements

are r.e. coherent subsets of |D| w.r.t. this coding.

How much does this alter the ensuing classical realizability model?
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